Learning with Pseudo-Ensembles
نویسندگان
چکیده
We formalize the notion of a pseudo-ensemble, a (possibly infinite) collection of child models spawned from a parent model by perturbing it according to some noise process. E.g., dropout [9] in a deep neural network trains a pseudo-ensemble of child subnetworks generated by randomly masking nodes in the parent network. We examine the relationship of pseudo-ensembles, which involve perturbation in model-space, to standard ensemble methods and existing notions of robustness, which focus on perturbation in observation-space. We present a novel regularizer based on making the behavior of a pseudo-ensemble robust with respect to the noise process generating it. In the fully-supervised setting, our regularizer matches the performance of dropout. But, unlike dropout, our regularizer naturally extends to the semi-supervised setting, where it produces state-of-the-art results. We provide a case study in which we transform the Recursive Neural Tensor Network of [19] into a pseudo-ensemble, which significantly improves its performance on a real-world sentiment analysis benchmark.
منابع مشابه
Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملRotation-based ensembles of RBF networks
Ensemble methods allow to improve the accuracy of classification methods. This work considers the application of one of these methods, named Rotation-based, when the classifiers to combine are RBF Networks. This ensemble method, for each member of the ensemble, transforms the data set using a pseudo-random rotation of the axis. Then the classifier is constructed using this rotation data. The re...
متن کاملAn experimental study on diversity for bagging and boosting with linear classifiers
In classifier combination, it is believed that diverse ensembles have a better potential for improvement on the accuracy than nondiverse ensembles. We put this hypothesis to a test for two methods for building the ensembles: Bagging and Boosting, with two linear classifier models: the nearest mean classifier and the pseudo-Fisher linear discriminant classifier. To estimate diversity, we apply n...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملConstruction of classifier ensembles by means of artificial immune systems
This paper presents the application of Artificial Immune Systems to the design of classifier ensembles. Ensembles of classifiers are a very interesting alternative to single classifiers when facing difficult problems. In general, ensembles are able to achieve better performance in terms of learning and generalisation errors. Several papers have shown that the processes of classifier design and ...
متن کامل